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Example: child welfare

Baseline

Race/sex/etc

Mediators

Decision

Outcome

I Decision to dispatch case-worker may depend on all available
information, and optimal decision would minimize negative outcomes
(e.g. child separation and/or hospitalization).

I Unconstrained optimal decision-making may lead to unacceptable racial
disparities.

I Ignoring race information is insufficient: dependence due to proxies
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Our perspective

Baseline

Race

Mediators

Decision

Outcome

I In a “fairer world,” certain (discriminatory or unjust) mechanisms would
be absent.

I This corresponds to the absence of some path-specific causal effects
(RN and Shpitser, 2018).

I Approximate the “nearest fair world” and learn optimal policies there
(RN, Malinsky, Shpitser, 2019)

I Must sacrifice some optimality to make decisions fairly.
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Sequential decision making

Decision rule: fAi : Hi 7→ Ai

Policy: fA = {fA1 , fA2}

(dynamic treatment regimes)

H1

A1

Y1

A2

Y

I Counterfactual response under fA is denoted by Y (fA)

I Optimal policy: f∗A := argmaxfA E[Y (fA)]

I Fairness concerns arise since H1 = {X,S,M}
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Main methodological questions

1. How to express fairness principles mathematically?

2. How to construct a fair distribution/world?

3. How to lean optimal policies in the fair distribution/world?

I RN and I. Shpitser, Fair Inference on Outcomes, AAAI 2018.
I RN, D. Malinsky, and I. Shpitser, Learning Optimal Fair Policies, ICML 2019.
I RN, D. Malinsky, and I. Shpitser, Optimal Training of Fair Predictive Models, CLeaR 2022.
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1. Fairness notions



Definitions of (un)fairness

Associative measures of (un)fairness:
I Disparate impact, predictive parity, equalized odds, etc

I Ignore the underlying DGP
I Ignore the role of policy makers, bioethicists, legal experts

(one-fits-all definitions)
I Not adaptable to use context-specific information

Desirable definition of (un)fairness should:
I Use context-specific information
I Listen to causal relations
I Keep experts in the loop
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Mathematical expression of a legal passage

Would the employer have taken
the same action had the em-
ployee been of a different race
and everything else had re-
mained the same?

S
(Perceived race)

M
(Characteristics)

Y
(Hiring status)

X
(Baselines)

Name-swapping experiments to evaluate racism in hiring:
I African American: S = 1, Caucasian: S = 0,

I Y (1,M(0)) : hiring a Caucasian with an African American sounding name

I Y (0) : hiring a Caucasian

I Direct effect: E
[
Y
(
1,M(0)

)]
− E

[
Y (0)

]
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Identification and estimation of the direct effect

Direct effect = E[Y (1,M(0))]− E[Y (0)]

T M Y

X

E[Y (1,M(0))] = E
[∑
m

E[Y | x,m, T = 1]× p(M = m | x, T = 0)
]
= g(PZ)
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Identification and estimation of the direct effect

Direct effect = E[Y (1,M(0))]− E[Y (0)]

T M Y

X

E[Y (1,M(0))] = E
[∑
m

E[Y | x,m, T = 1]× p(M = m | x, T = 0)
]
= g(PZ)

Plugin estimator: Pn
(∑

m Ê[Y | xi,m, T = 1]× p̂(M = m | xi, T = 0)
)

Inverse probability weighting: p(T | X), p(M | X,T )

Mixed estimator: p(T | X), E[Y | X,T,M ]

Augmented IPW: p(T | X), p(M | X,T ), E[Y | X,T,M ] (triply robust)

(Tchetgen Tchetgen and Shpitser, Annals of statistics, 2012)
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Is unfairness always about the direct effect of S on Y ?

S
(Sex)

M
(Physical tests)

Y
(Hiring status)

X
(Baselines)
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Is unfairness always about the direct effect of S on Y ?

S
(Sex)

M
(Physical tests)

Y
(Hiring status)

X
(Baselines)

I Y : hiring a fire fighter

I S → M → Y X

I Y : hiring an accountant

I S → M → Y 7

I So the answer is NO! Definition should be context-specififc.
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From mediation to arbitrary path-specific effects

S
(Race)

M
(Insurance)

L
(Complications)

Y
(Health risk score)

X
(Baselines)

I Path-specific effect (PSE):
I Along pathways of interest, all nodes behave as if S = s,
I Along all other pathways, nodes behave as if S = s′.
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From mediation to arbitrary path-specific effects

S
(Race)

M
(Insurance)

L
(Complications)

Y
(Health risk score)

X
(Baselines)

I Path-specific effect (PSE):
I Along pathways of interest, all nodes behave as if S = s,
I Along all other pathways, nodes behave as if S = s′.

I Identification and estimation of PSEs:
(Shpitser, Tchetgen Tchetgen, VanderWeele, Avin, Pearl, Robins,
Richardson, Malinsky, and more)
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Our definition of fairness

I ACE = PSEunfair + PSEfair

I PSEunfair: effect of S on Y along unfair causal pathways

(RN and Shpitser, Fair Inference on outcomes, AAAI, 2018.)

I Determining unfair pathways is a domain specific issue
I This is a feature not a bug.

I Is this sufficient for defining fairness in automated descision
making?
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Fairness in automated decision making

X

S

M

A1

Y1

A2

Y

I Retrospective bias:
bias in historical data used as
input to learning procedure.

Example: unfair paths from S to Y :
{S → Y , S → Y1 → · · · → Y,
S → A1 → . . .→ Y ,
S → A2 → . . .→ Y }.

PSEsy = g1(PZ)

X

S

M

A1

Y1

A2

Y

I Prospective bias:
functional form of policy depends
on sensitive features.

Example: unfair paths from S to A1, A2:
{S → A1},
and
{S → A2, S → A1 → . . .→ A2}

PSEsak = gk(PZ)

Z = {X,S,M,A1, ..., AK , Y1, ..., YK}
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2. Fair world



Defining a fair world/distribution

I p(Z): observed (unfair) distribution

I A set of identified unfair PSEs denoted by gj(PZ) ∀j ∈ {1, ..., J}

I p∗(Z): fair distribution
I A distribution where unfair effects are null
I Close to p(Z) via Kullback-Leibler divergence

I Give lower/upper tolerance bounds ε−j , ε
+
j , p∗(Z) is defined as:

p∗(Z) ≡ argmin
q

DKL(p || q)

subject to ε−j ≤ gj(PZ) ≤ ε
+
j , ∀j ∈ {1, ..., J},
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Approximating the fair world with finite samples

I Assume n iid samples ∼ p(Z)

I Likelihood function: L(Z;α)

I Denote the estimator for g(PZ) via ĝ(PZ)

I Approximate p∗(Z) by solving:

α̂ =argmax
α
L(Z;α)

such that ε−j ≤ ĝj(PZ) ≤ ε
+
j , j = 1, . . . , J.
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Example: a two-stage decision point

Approximate p∗(Z) by solving:

α̂ =argmax
α
L(Z;α)

s.t. ε−j ≤ ĝj(PZ) ≤ ε
+
j , j = 1, . . . , J.

X

S

M

A1

Y1

A2

Y

Consistent estimators of PSEsy and PSEsak :

ĝ
sy

(Z) =
1

N

N∑
n=1

{ I(Sn = s)

p(Sn|Xn)

p(Mn|s′, Xn)

p(Mn|s,Xn)
−

I(Sn = s′)

p(Sn|Xn)

}
Yn,

ĝ
sak (Z) =

1

N

N∑
n=1

{ I(Sn = s)

p(Sn|Xn)

p(Mn|s′, Xn)

p(Mn|s,Xn)
−

I(Sn = s′)

p(Sn|Xn)

}
Akn, k = 1, 2.

Constraints involve p(S | X;αs) and p(M | S,X;αm) models.
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Breaking the cycle of injustice

I Let p∗(M | S,X;αm) and p∗(S | X;αs) be the constrained models
chosen to satisfy PSEsy = PSEsa1 = PSEsa2 = 0

I Let p̃(Z) be the joint distribution induced by p∗(M |S,X;αm) and
p∗(S|X;αs):

p̃(Z) ≡ p(X)p∗(S|X;αs) p
∗(M |S,X;αm)

K∏
k=1

p(Ak|Hk)p(Yk|Ak, Hk).

I Then PSEsy and PSEsak taken wrt p̃(Z) are also zero.

=⇒ constraining the S and M models induces a “fair distribution” no
matter how Ak or Yk are determined.

I This enables us to choose our optimal decision rules without restricting
the policy space and also allowing for the mechanisms that determine
outcomes to remain outside the control of the policy-maker.
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3. Optimal policies in the fair world



Three strategies for policy estimation

We consider three strategies for estimating the optimal policy:

I Q-learning

I Value search

I G-estimation

In each case, we must modify these procedures to operate wrt the
fair distribution.

We focus on Q-learning and value search in this talk.
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Optimal fair policy: Q-learning

I Unfair world: expectations wrt to p(Z)

I Optimal policy: f∗Ak
= argmaxak Qk(Hk, ak;βk)

I Fair world expectations wrt to p∗(Z)
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Optimal fair policy: Q-learning

I Unfair world: expectations wrt to p(Z)

I Optimal policy: f∗Ak
= argmaxak Qk(Hk, ak;βk)

I Fair world expectations wrt to p∗(Z)

Q̃k(Hk \ {M,S}, Ak) =
1

Zk

∑
m,s

Q∗k(Hk, Ak) p
∗(m|X, s;αm) p∗(s|X;αs),

for k = 1, . . . ,K.
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Optimal fair policy: Value search

I Optimal policy: f∗A = argmaxfA E[Y (fA)]

I Unfair world: expectations wrt to p(Z)

E[Y (fA)] = E
[ I(A1 = fA1(H1))

p(A1|H1;ψ)
× I(A2 = fA2(H2))

p(A2|H2;ψ)
× Y

]
,

I Fair world: expectations wrt to p∗(Z)

Ẽ[Y (fA)] =
1

Z

∑
m,s

E[Y (fA)] p
∗(m|X, s;αm) p∗(s|X;αs)
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COMPAS application

X

S

M

A

Y

I S: race, X: other demographics, M : prior convictions

I A: incarceration (based on risk of recidivism)

I Heuristic utility: Y ≡ (1−A)× {θR+ (1−R)} −A
I R: whether or not recidivism occurred in a span of two years

I Negative utility (social, economical costs) associated with
incarceration A = 1.

I Some cost to releasing individuals who go on to reoffend (i.e., for
whom A = 0 and R = 1) controlled by θ

I Positive utility associated with releasing individuals who do not go
on to recidivate (i.e., for whom A = 0 and R = 0)
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COMPAS application ctd.

Question: What would be the resulting difference in pre-trial
incarceration rate under a “fair” vs. unconstrained optimal policy?

Result: “fair” vs. unconstrained policies differ, and incarceration rates
depend crucially on the utility function.
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Summary

1. How to express fairness principles mathematically?
I The approach we take requires substantive ethical input from

experts and/or the public.
I We also require specifying a causal model (based on domain

knowledge or causal structure learning).
I Dealing with unidentified causal effects (use of bounds)

2. How to modify statistical procedures to reduce unfair effects?
I Constrained MLE (hybrid likelihood)
I Developing more robust constrained optimization methods to use

data as efficiently as possible

3. How to generalize and deploy these modified algorithms?
I Be mindful of the fact that samples are collected in p and not p∗
I Find more effective approaches to map instances between p and p∗
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Relevant papers:
I RN and Shpitser, Fair Inference on Outcomes, AAAI 2018.
I RN, Malinsly, and Shpitser, Learning Optimal Fair Policies, ICML 2019.
I RN, Malinsly, and Shpitser, Optimal Training of Fair Predictive Models,

CLeaR 2022.
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